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The goal of the present study is to experimentally investigate the behavior of different 
characteristics in a turbulent flow. Such information is useful for developing representa- 
tions of the effect of vorticity on the behavior of scales, correlation functions, and spec- 
tral distributions. The unit and experimental method employed were presented in [i] and de- 
scribed in more detail in [2, 3]. 

The unit contained a feed device with one section composed of a straight circular tube 
having a length equal to i00 tube diameters. This ensured a developed turbulent air flow with 
parameters corresponding to the literature data for the investigated regimes. The outlet 
section of the tube- 25 diameters long - could be rotated at a speed of 3-70 rps. Tube diam- 
eter 2a = 6 cm. Most of the measurements reported here were obtained with a flow velocity 
of i0 m/sec on the tube axis. Air temperature during the tests was 15-18~ The Reynolds 
number was calculated from the diameter of the tube and axial flow velocity and was equal 
to 4'104 . 

The measurements were made with thermoanemometric equipment made by the DISA company. 
The continuous signals recorded on magnetic tape were digitally analyzed on a computer. We 
took steps to reduce and account for errors connected with the effect of conditions at the 
inlet, interference, and the presence of filters, as well as errors associated with frequency 
and amplitude discrimination, the superposition of spectra, the finite length of the wire of 
the hot-wire anemometer, and the broad variation of amplitude in the spectral distribution. 
Here, we resorted to smoothing within frequency intervals. 

We normally used standard i- and 2-wire sensors with wires 1.25 mm long. The diameter 
of the tungsten wire was 5.10 -3 mm. We also used a sensor with a wire 0.25 mm long and 2.5- 
10 -3 mm in diameter in order to more completely account for the dissipative part of the spectrum 
The error connected with the finite length of the sensor wire was estimated by the method 
in [4]: the error was within several percent for the intensities of the pulsations and the 
shear stresses; with a wire length of 1.25 mm, the error for the spectral amplitudes was 
less than 10% up to k ~ = kD = 0.i but became significant at k ~ = 0.3. With a wire 0.25 mm 
long, the error was less than 5% up to k ~ = i. On the whole, up to k ~ = 0.2, the error of 
the amplitudes of the spectral distributions is likely to be no more than 15%. 

Below, we present and analyze data on the behavior of the unidimensional spectrum for 
the longitudinal component of the velocity pulsations in relation to flow direction. In the 
case of developed turbulent flow in a stationary channel, we compared several values with 
the data of Laufer and Lawn. Figure 1 shows the dimensionless rate of energy dissipation 
over the radius of the tube aexx/V ~. Figure 2 shows the relation for the Taylor microscale. 
The agreement is satisfactory and shows that the empirical data is of acceptable accuracy. 
We used the following notation: k = 2zf/<Vx> is the wave number; D = (v3/E) I/4 is the Kol- 
mogorov microscale; e = 15.exx is the rate of dissipation of the energy of the pulsative 
motion; I is Taylor' transverse coefficient; ~2 = 10v<E>/e, <E> = (i/2)<vivi>, v is kinematic 
viscosity; A is the longitudinal integral scale; V, is friction rate. 

Figure 3 shows Moscow Physicotechnical Institute (MFTI) data on spectral distribution 
in the coordinates ~=kEx(k)/<v~> and kA x for a flow without rotation and for different posi- 
tions over the radius (lines I and II are for Re I = 26.160, while points 1-5 are for r = 0, 
0.2, 0.4, 0.6, 0.8). Figure 4 shows the same results with the outlet section of the channel 
rotating at 8 rps, H = <]f~}w l(Vx)m~x = 0.15. 
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With increasing distance from the tube axis, interaction with the nonuniform main flow 
results in distortionof the spectrum at moderate frequencies. Similar behavior is seen from 
the spectrum for shear stress within the same frequency range, but such distortions are ab- 
sent in the spectra for the radial component of velocity fluctuation (Fig. 5, where the nota- 
tion corresponds to that in Fig. 3). As a rule, the literature does not contain numerical 
results, while transferring data from the graphs leads to additional errors. 

The behavior of the experimental spectral distributions can be compared with a general- 
ized semi-empirical model (the EVK model) of a uniform isotropic flow [7-9] (the expression 
for the spectral energy distribution includes limit relations for the low-frequency interval, 
the inertial Kolmogrov-Obukhov frequency interval, and the dissipative frequency interval). 

The unidimensional spectrum has the form [9] 

E~ = n = A a ~  [(z2+ + (Z2 + y2) -1/ '  ] [@ (Z2 + ~ + u ~] 

= 2 y~ dy, y = Q~/fk~ z = ~ . ~  , 

0 

Ax  = ~Q5/2, A~ = a /Q  ~, Q = 1, a = i,65. 

The s p e c t r a l  d i s t r i b u t i o n  c u r v e s  t u r n  o u t  t o  be s t r a t i f i e d  w i t h  r e s p e c t  t o  t h e  l o c a l  
Reynolds number Re x = <v~>i/2X/v. In the distribution 

k E x  (k)/<v~> = ~ (ln kAx, Rex) 

t h e  maximum o f  t h e  c u r v e  a p p r o a c h e s  0 .27 w i t h  an i n c r e a s e  in  Re X . Here <v~> i s  t h e  i n t e n s i t y  
o f  t h e  v e l o c i t y  f l u c t u a t i o n s  a l o n g  t h e  f l ow  a x i s .  The i n t e g r a l  l o n g i t u d i n a l  s c a l e  i s  found  
n u m e r i c a l l y  and can be c a l c u l a t e d  from t h e  a p p r o x i m a t i o n  

In the flow region near the axis - where there is no intensive local interaction between 
the mean and fluctuation flows - the unidimensional longitudinal spectrum in the dissipative 
and energy-intensive frequency intervals is close to the spectral distribution for uniform 
isotropic flow. 

Figure 6 shows results for the dependence of max ~ on Re X for the flow in the tube: 
points 1-5 show MFTI data for different values of flow velocity, radial position, and number 
of rotations of the channel section; points 6-11 show data from [5, 6, 10-13]. 

The dependence of the longitudinal integral scale (connected with the value of the 
spectrum at the zero frequency) on Re X is also consistent with the behavior of the relation 
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for the generalized spectrum model. We were not able to precisely determine the error of 
the experimental measurement of the spectrum at the zero frequency, since we could not elim- 
inate the effect of noise. This relation is shown in Fig. 7: MFTI data for different numbers 
of channel rotations, radial positions, and velocities (points 1-3 are for N = 0, 8, and 32). 
The lines in all of the figures give the relations for the generalized spectrum model (EVK 
model). 

The maximum value of ~ is a function of Re X which approaches the limit quite rapidly. 
Beginning with the value ~15, the position of this maximum as a function of the dimensionless 
wave number kA is nearly independent of Re X. Here, the wave number is normalized for the 
integral scale calculated from an approximate expression. The distorting effect of flow non- 
uniformity becomes more evident with increasing distance from the tube axis. Generally speak- 
ing, this effect is small. It is true, however, that the range of variation of Rex was also 
small here. 

The validity of the proposition that the local value of Re X has the main effect on the 
spectral distribution should be independent of the type of flow. Figure 6 also shc~s data 
for several flows: points 12 - plane channel [14]; 13 - wake behind a sphere, wake behind a 
streamlined body, and a non-impulsive wake [15]; 14 - axisymmetric jet (on the axis:) [16]; 
15, 16 - axis of a jet [17]. With a scatter ofi• all of the flows are described by a 
universal relation. The conservative behavior of the spectral distribution was noted in [15] 
for the flows studied in that investigation. 

With normalization of the wave numbers with respect to their values on the integral 
scale, the spectral distributions of the intensities for the radial and azimuthal components 
of the velocity fluctuations also have a universal form. 

The manifestation of vortieity, connected with rotation of the channel relative to the 
long axis of the flow, leads to a decrease in shear stress. There is also a decrease in the 
local effect of the mean field on the fluctuation field, with retention of the general non- 
local character of the interaction. Up to a relative radius of 0.8, the spectral energy dis- 
tribution approaches the universal distribution for the generalized model. This is evident 
from the relations in Fig. 4. 
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TABLE 1 

II 

/ 
- I {Vx) <v@ 

[~/sec 

0 P to,o2 o 
0,2 9,82 0 
0,4 9,38 0 
0,6 8,72 0 
0,8 7,76 0 

0 't0,04 
0,2 9,84 

0,15 0,4 9,34 
0,6 8,58 
0,8 7,58 

o ;0,08 
0,2 9,94 

0,60 0,4 9,62 
0,6 [ 8,92 
0,8 ] 7,50 

0,123 
0,i69 
0,274 
0,403 
0,554 

m 2 Isec 2 ! 

0,083 0,083 
0,094 0,t02 
0,t24 0,t49 
0,t59 0,205 
0,t87 0,262 

{~rVx) 

0 
0,036 
0,072 
0,t08 
0,i43 

c m  

0,276 0,0t75 
0,294 0,0166 
0,30t 0,0t49 
0,284 0,0t3t 
0,242 0,0112 

0 0,098 
0,04 0,142 
0,tt 0,24t 
0,25 0,373 
0,54 10,515 

0,070 
0,082 
0,111 
0,150 
0,t77 

0,070 
0,089 
0,t39 
0,207 
0,268 

I 0 
0,016 
0,064 
O,lOt 
0,t30 

0,283 0,0t86 
0,290 0,0t72 
0,288 0,0i51 
0,264 0,0t29 
0,222 0,0109 

0 
0,02 
0,t4 
0,5t 
1,51 

0,034 
0,048 
0,082 
0,t44 
0,249 

0,027 
0,029 
0,038 
0,055 
0,079 

0,027 
0,032 
0,052 
0,097 
0,t90 

0 
0,009 
0,019 
0,032 
0,047 

0,343 
0,352 
0,325 
0,245 
0,t64 

0,0266 
0,0250 
0,0209 
0,0i58 
0,01t3 

Re~. 

65 
8t 

t06 
120 
t20 

60 
73 
95 

i08 
106 

43 
51 
62 
62 
55 

Analysis of the results we have obtained shows that there is a sufficiently universal 
representation for spectral distributions corresponding to second-order moments for velocity 
fluctuations. This opens up possibilities for developing an approximate method of calcula- 
ting the spectral characteristics in developed turbulent flow. 

The Kolmogorov microscale and the rate of energy dissipation were measured directly by 
means of a sensor with a wire having a length of 0.25 mm. The value of g is 90% at k ~ = 0.7, 
while it is about 30% at k ~ = 0.1. The distortion of the amplitudes of the spectrum is al- 
ready substantial at k ~ ~ 0.2-0.3 with a wire length of 1.25 mm. It can be seen from the 
relations of the generalized model that M = max (k~ = 0.24 and k~ = 0.i, regardless of the 
Reynolds number (beginning at Re X = 40). It turns out that the position of the maximum on 
the dissipative spectrum can be made to agree with its dimensionless value when the latter is 
obtained by choosing the Kolmogorov microscale as the single parameter. The two values dif- 
fer only slightly in the neighborhood of the maximum for a wire length of 1.25 mm. Values 
of the microscale calculated in the above manner differ 10-15% from values found directly 
from measurements of E for the Laufer, Lawn, and MFTI data. The same approach can be used 
to determine q and e. In quantities of the type (Rel) x, A x, the subscript x indicates use 
of the intensity of velocity fluctuations in the corresponding direction. 

Table i shows data characterizing the flow. 

i .  

. 

3. 

, 

5. 
6. 
7. 

8. 
9. 

LITERATURE CITED 

P. G. Zaets, A. T. Onufriev, M. I. Pilipchuk, et el., "Use of a thermoanemometric com- 
plex in a unit with a computer to measure the turbulence characteristics of vortical 
flows," in: Physical Methods of Studying Transparent Inhomogeneities [in Russian], 
Znanie, Moscow (1986). 
P. G. Zaets, Experimental Study of the Turbulence Spectrum in a Flow in a Rotating Tube, 
Author's Abstract of Physical-Mathematical Candidate Dissertation, MFTI, Moscow (1986). 
N. A. Safarov, Behavior of the Parameters of Developed Turbulent Flow in a Straight 
Cylindrical Channel Rotating Relative to the Longitudinal Axis, Author's Abstract of 
Physical-Mathematical Sciences Candidate Dissertation, MFTI, Moscow (1986). 
J. C. Wyngard, "Measurement of small-scale turbulence with hot wires," J. Phys. E, Sci. 
Instrum., ~, Ser. 2, 1105 (1968). 
J. Laufer, "Structure of turbulence in fully developed pipe flow," NACA Tech. Rept. 
(Washington), No. 1174 (1954). 
C. J. Lawn, "Determination of the rate of dissipation in turbulent flow," J. Fluid Mech., 
48, Part 3 (1971). 
J. H. Pao, "Structure of turbulent velocity and scalar fields at large wave numbers," 
Phys. Fluids, 8, No. 6 (1965). 
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics [in Russian], Parts 1-2, 
Nauka, Moscow (1965). ! 
R. J. Driscall and K. A. Kennedy, "A model for the turbulent energy spectrum," Phys. 
Fluids, 26, No. 5 (1983). 

34 



I0. R. P. Patel, "A note on fully developed turbulent flow down a circular pipe," Aeronaut. 
J., 78, No. 757 (1974). 

Ii. K. Bremhorst and K. J. Bullock, "Spectral measurements of temperature and longitudinal 
velocity fluctuations in fully developed pipe flow," Int. J. Heat Mass Transfer, 13, 
1313 (1972). 

12. K. Bremhorst and T. B. Walker, "Spectral measurements of turbulent momentum transfer in 
fully developed pipe flow," J. Fluid Mech., 61, Part 1 (1973). 

13. W. R. Morrison and R. E. Kronauer, "Structural similarity for fully developed turbulence 
in smooth tubes," ibid., 39, Part i (1969). 

14. G. Cont-Bello, Turbulent Flow in a Channel with Parallel Walls [Russian translation], 
Mir, Moscow (1968). 

15. V. I. Bukreev, Empirical Validation of Current Representations on the Turbulent Motion 
of an Incompressible Fluid, Author's Abstract of Physical-Mathematical Sciences Doctoral 
Dissertation. Inst. Gidrodinamiki, Novosibirsk (1984). 

16. M.M. Gibson,"Spectra of turbulence in a round jet," J. Fluid Mech., 151, No. 2 (1985). 
17. S. Corrsin and M. S. Uberoi, "Spectra and diffusion in a round turbulent jet," NACA Tech. 

Memo~(Washington), No. 2124 (1950). 
18. P. G. Zaets, A. T. 0nufriev, N. A. Safarov, and R. A. Safarov, "Experimental study of 

turbulent one-dimensional spectrum function in rotating pipe flow. Importance of the 
isotropic uniform turbulence model," Fifth EPS Liquid State Conf., Moscow, October 
16-21, 1989. Proc., Moscow (1989). 

RELATIONSHIP BETWEEN TURBULENT AND KINETIC ENERGY IN A MIXED SUBSTANCE 

V. E. Neuvazhaev UDC 523,,526.517.4 

A simple semi-empirical model of turbulent mixing is used to calculate the eddy kinetic 
energy of a mixed zone and to compare this value with the kinetic energy of the zone. The 
latter is determined by the effect of acceleration, which induces motion in the corresponding 
substance. This problem was examined in [i] on the basis of the model in [2]. Below, we 
use the approximate approach developed in [3, 4]. We compare our results with the results 
obtained in [i] and explain the differences - particularly for the case of impulsive accumu- 
lation. Data for impulsive acceleration is compared with experimental results in [5] and 
satisfactory agreement is established. This agreement could be improved if the method used 
to analyze the empirical data is chosen so as to be consistent with the theoretical method. 

Formulation of the Problem. We will examine the problem of the mixing of two incom- 
pressible fluids of different densities located in a gravitational field. The direction of 
the field is such as to induce an instability which leads to turbulent mixing of the sub- 
stances. Mikaelian [I] used the diffusion model in [2] to calculate the relation between the 
change in potential energy due to turbulent mixing and the kinetic energy acquired by a mixed 
substance as a result of acceleration. 

We calculate the change in potential energy which is due to mixing of the substance 
within the interval x2 ! x ~ xi: 

A~=go (p~--p).d~+ (p~--p).d~. (1) 

Here go is acceleration; p is the density of the mixture; P2 and Pl are the densities of the 
light and heavy fluids; x = 0 is the position of the interface at the initial moment when the 
fluids are not yet mixed. 

We used a notation different than that employed in [i] for the change in potential 
energy, in that E t is taken to mean the turbulence energy due to the characteristic turbulent 
velocity v. Following [I] in designating the kinetic energy of the mixed substance as Ed, we 
can determine this quantity as 
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